The average velocity at T_1K , and the most probable velocity at T_2K of CO_2 gas is 9.0×10^4 cm sec⁻¹. Calculate the value of T_1 and T_2 . (1990 - 4 Marks)

Average velocity =
$$\sqrt{\frac{8RT}{\pi M}}$$

and Most probable velocity =
$$\sqrt{\frac{2RT}{M}}$$

Given -For CO2

Average velocity at T_1 = Most probable velocity at T_2

=
$$9 \times 10^4$$
 cm/sec = $\frac{9 \times 10^4}{100}$ m/sec.
= 9×10^2 m/sec.

$$\therefore 9 \times 10^2 = \sqrt{\frac{8 \times 8.314 \times T_1}{3.14 \times 44 \times 10^{-3}}} \quad ...(A)$$

[Average velocity at T1K]

and
$$9 \times 10^2 = \sqrt{\frac{2 \times 8.314 \times T_2}{44 \times 10^{-3}}}$$
 ...(B)

[Most probable velocity at T_2K]

On solving, $T_1 = 1682.5 \text{ K}$, $T_2 = 2143.4 \text{ K}$